170 research outputs found

    A Unifying Framework in Vector-valued Reproducing Kernel Hilbert Spaces for Manifold Regularization and Co-Regularized Multi-view Learning

    Get PDF
    This paper presents a general vector-valued reproducing kernel Hilbert spaces (RKHS) framework for the problem of learning an unknown functional dependency between a structured input space and a structured output space. Our formulation encompasses both Vector-valued Manifold Regularization and Co-regularized Multi-view Learning, providing in particular a unifying framework linking these two important learning approaches. In the case of the least square loss function, we provide a closed form solution, which is obtained by solving a system of linear equations. In the case of Support Vector Machine (SVM) classi fi cation, our formulation generalizes in particular both the binary Laplacian SVM to the multi-class, multi-view settings and the multi-class Simplex Cone SVM to the semisupervised, multi-view settings. The solution is obtained by solving a single quadratic optimization problem, as in standard SVM, via the Sequential Minimal Optimization (SMO) approach. Empirical results obtained on the task of object recognition, using several challenging data sets, demonstrate the competitiveness of our algorithms compared with other state-of-the-art methods

    An adapted version of the water wave optimization algorithm for the capacitated vehicle routing problem with time windows with application to a real case using probe data

    Get PDF
    Customers' habits, as far as shipping requests are concerned, have changed in the last decade, due to the fast spread of e-commerce and business to consumer (B2C) systems, thus generating more and more vehicles on the road, traffic congestion and, consequently, more pollution. Trying to partially solve this problem, the operational research field dedicates part of its research to possible ways to optimize transports in terms of costs, travel times, full loads etc., with the aim of reducing inefficiencies and impacts on profit, planet and people, i.e., the well-known triple bottom line approach to sustainability, also thanks to new technologies able to instantly provide probe data, which can detail information as far as the vehicle behavior. In line with this, an adapted version of the metaheuristic water wave optimization algorithm is here presented and applied to the context of the capacitated vehicle routing problem with time windows. This latter one is a particular case of the vehicle routing problem, whose aim is to define the best route in terms of travel time for visiting a set of customers, given the vehicles capacity and time constraints in which some customers need to be visited. The algorithm is then tested on a real case study of an express courier operating in the South of Italy. A nearest neighbor heuristic is applied, as well, to the same set of data, to test the effectiveness and accuracy of the algorithm. Results show a better performance of the proposed metaheuristic, which could improve the journeys by reducing the travel time by up to 23.64%

    Multipass SAR interferometry. A tool for geologic analysis

    Get PDF
    This paper investigates how the information content of repeat pass satellite SAR interferometric (INSAR) data can be used to provide the geologist with a tool which can improve his ability and efficacy in the geologic analysis of SAR imagery. INSAR processing produces interferometric fringes, coherence and amplitude images. To produce an interferometric DEM phase unwrapping is a critical step. For phase unwrapping, we propose the WLMS (Weighted Least Mean Square) estimation of the phase, which is a generalization of the least-mean square method. The crucial step in WLMS approach is the weighting procedure. We propose a weighting algorithm based on the fusion of a priori information extracted from different interferometric products. These different information channels—DEM, amplitude and coherence—can be effectively fused to convey information to the geologic interpreter using 3D stereoscopic visualization;SAR stereo pairs were artificially generated using the interferometric DEM and the intensity image or the coherence image of the area overlaid. In order to ascertain the performance of the procedure a number of tests were carried out over various sites in Matese (Southern Italy), which has a fairly demanding topography, using ERS SAR tandem data. The results demonstrate that WLMS unwrapping method is sufficiently robust in capturing the morphology of the area and that stereoscopic visualization greatly facilitates geologic interpretation and the observation of detailed features of the terrain

    Capacitated vehicle routing problem with time windows: A linear model and a case study of express courier

    Get PDF
    Given the importance gained by the e-commerce field in the recent years, this study investigates the issue of minimizing the delivery travel time of a real company located in the South of Italy and operating as a courier, express and parcel (CEP) service provider. The scenario under examination consists of a depot, three vehicles and several customers served by the CEP company. A Capacitated Vehicle Routing Problem with Time Windows (CVRPTW) model is formulated to optimize the deliveries to the customers for the targeted company and solved under the commercial software IBM ILOG CPLEX Optimization Studio. As outcomes, the model returns a simulated path covered by the vehicles and computes the corresponding travel time. Results show that with the proposed formulation, the time windows (TWs) of all customers are respected. Because the analysis is grounded on a real company, the results are expected to provide practical indications to logistics and supply chain managers, to maximize the performance of their delivery system

    Software for full-color 3D reconstruction of the biological tissues internal structure

    Full text link
    A software for processing sets of full-color images of biological tissue histological sections is developed. We used histological sections obtained by the method of high-precision layer-by-layer grinding of frozen biological tissues. The software allows restoring the image of the tissue for an arbitrary cross-section of the tissue sample. Thus, our method is designed to create a full-color 3D reconstruction of the biological tissue structure. The resolution of 3D reconstruction is determined by the quality of the initial histological sections. The newly developed technology available to us provides a resolution of up to 5 - 10 {\mu}m in three dimensions.Comment: 11 pages, 8 figure

    Image and Video Understanding in Big Data

    Get PDF
    • …
    corecore